TEE-904 Laser Diagnostics for Thermal Engineering Applications

Course Objectives

- 1. The objectives of "Laser Diagnostics for Thermal Engineering Applications" course are:
 - a. To develop fundamental understanding of various spectroscopic techniques relevant for thermal engineering applications
 - b. To understand the theoretical concepts of molecular structure and their applications in spectroscopy and laser diagnostics
 - c. To develop in-depth understanding of absorption based infra-red spectroscopic measurements
 - d. To identify advantages and limitations of various spectroscopic techniques.

Course Contents

2. Contents with suggested contact hours

No.	Topics	Contact
		Hours
a.	Introduction to Spectroscopy	
	Role of Quantum Mechanics	
	Most Common Forms of Spectra	
	Typical Absorption Spectroscopy Set-up	
	Beer's Law of Absorption	
	Elements of Spectroscopy	6
	Plank's Law	6
	Wavelength / Frequency Conversion	
	Units and Conversion	
	Spectral Regions	
	Spectral Absorption Coefficient	
	Boltzmann Distribution	
b.	Diatomic Molecular Spectra	3
	Interaction of EM Radiation with Molecules	3

	,	
	Rotational Spectra: Simple Model	
	Vibrational Spectra: Simple Model	
	Rotational and Vibrational Spectra: Improved	
	Models	
	Vibrational Spectra: Simple Model	
	Vibrotational Spectra: Improved Model	
	Electronic Spectra of Diatomic Molecules	
C.	Bond Dissociation Energies	
	Absorption	
	Emission	3
	Birge-Spooner Method	
	Thermochemical Approach	
	Predissociation	
d.	Polyatomic Molecular Spectra	
	Rotational Spectra of Polyatomic Molecules	3
	Vibrational Bands of Polyatomic Molecules	
	Vibrotational Spectra of Polyatomic Molecules	
e.	Effects of Nuclear Spin	
	Nuclear Spin and Symmetry	3
	Case-I: Linear Molecules	
	Case-II: Non-Linear Molecules	
f.	Rayleight and Raman Spectra	
	Light Scattering	
	Quantum Model	3
	Classical Theory	
	Rotational Raman Spectra	
	Vibrational Raman Spectra	
g.	Quantitative Emission and Absorption	
	Spectral Absorption Coefficient	
	Einstein Theory of Radiation	6
	Revised Treatment of Einstein Theory	
	Radiative Lifetime	

	Temperature Dependent Linestrength				
	Concept of Band Strength				
h.	Spectral Lineshapes				
11.					
	Line Broadening Mechanism				
	Voigt Profiles	6			
	Line Shifting Mechanisms				
	Quantitative Lineshape Measurements				
i.	Electronic Spectra of Atoms				
	Electron Quantum Numbers	3			
	Single Electron Atoms				
	Multi-Electron Atoms				
j.	Laser Inducted Fluorescence				
	Typical Experimental Setup				
	Two-Level Model	2			
	Detection Limits	3			
	Characteristics Times				
	Applications of LIF				
k.	Diagnostics for Gaseous Flows				
	Photothermal Deflection (PTD)				
	Laser Optogalvanic (LOG)				
	Laser Ionization Spectroscopy				
	Spontaneous Raman Scattering (SRS)	3			
	Coherent Anti-Stokes Raman Spectroscpy				
	(CARS)				
l.	Case Studies				
	 Infrared Spectrum of H₂O 	_			
	Infrared Spectrum of CO	3			
	UV Absorption of OH				
	Total	45			

Course Outcomes

- 3. By the end of this course students will be able to:
 - a. Recall the basic concepts of spectroscopy and laser diagnostics techniques
 - b. Explain the theoretical concepts of molecular structure and its effect of spectroscopic behavior of molecule
 - c. Distinguish between numerous laser diagnostic techniques
 - d. List the advantages and limitations of numerous laser diagnostic techniques
 - e. Propose experimental setup to perform laser diagnostic measurements

4. Recommended Reading (including Textbooks and Reference books).

S. No.	Title	Author(s)	Remarks
a.	Laser Diagnostics for	A. C. Eckbreth	Text Book
	Combustion		
	Temperature and		
	Species		
b.	Laser Diagnostics and	Hua Zhao	Reference
	Optical Measurement		Book
	Techniques in Internal		
	Combustion Engines		

5. Recommended journals

- a. Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT)
- b. Combustion and Flame (C&F)